NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS **TECHNICAL NOTE 4028** PRELIMINARY INVESTIGATION OF PROPANE COMBUSTION IN A 3-INCH-DIAMETER DUCT AT INLET-AIR TEMPERATURES OF 1400° TO 1600° F By Erwin A. Lezberg Lewis Flight Propulsion Laboratory Cleveland, Ohio Washington July 1957 # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ## TECHNICAL NOTE 4028 PRELIMINARY INVESTIGATION OF PROPANE COMBUSTION IN A 3-INCH-DIAMETER DUCT AT INLET-AIR TEMPERATURES OF 1400° TO 1600° F By Erwin A. Lezberg ## SUMMARY Ignition delays and combustion efficiencies were determined for propane injected into a heated airstream. Spontaneous-ignition delays of 0.007 to 0.049 second occurred with a single-tube injector at temperatures between 1395° and 1585° F. These results followed the Arrhenius relation with an apparent activation energy of 43 kilocalories per mole. Two types of flames were observed for multipoint fuel injectors: a diffusion flame that stabilized at the injector orifices, and an ignition-stabilized flame that formed a flame front downstream of the fuel injector. Combustion efficiencies for the diffusion flames increased with increasing fuel-air ratio to values of 90 to 100 percent at a fuel-air ratio of about 0.01, with burner lengths 6 inches or longer. Efficiency decreased markedly at burner lengths below 6 inches. Decreasing pressure had only a small effect on the efficiencies. Air temperature had no effect in the range investigated. Combustion efficiencies for the ignition-stabilized flames were below 70 to 80 percent for burner lengths of 18 inches or less and were strongly dependent on burner length and temperature. Efficiency decreased as burner pressure was lowered. ## INTRODUCTION Air-breathing engines operating at hypersonic Mach numbers will have combustor stagnation temperatures and fuel residence times that are high enough for spontaneous ignition of the fuel. At temperatures above the ignition temperature, efficient combustion might be maintained by continuous self-ignition of the fuel with no flameholder recirculation zone. Except for some ignition studies (e.g., ref. 1) little experimental work has been done with steady-state combustion at inlet temperatures above 1400° F. The present investigation was initiated at the NACA Lewis laboratory to determine the influence of several inlet parameters on the combustion efficiency of gaseous fuels at air temperatures of 1400° to 1600° F. 4517 Ç**√-**1 Ignition temperatures and delays were determined for gaseous propane injected from a single-point fuel injector into a heated airstream. In addition, multipoint fuel injectors were used to study the combustion efficiency of propane as a function of fuel-air ratio, temperature, pressure, and burner length. Two types of flames were studied with the multipoint fuel injectors: a diffusion flame that stabilized at the injector orifices and a flame that stabilized by spontaneous ignition some distance downstream of the fuel injector. Ignition delay and the combustion efficiency of both types of flame were determined for the following conditions: | · | Ignition
delay | Combustion efficiency | |---|---------------------------|---| | Air temperature, ^O F
Fuel-air ratio | 11 to 25.
1395 to 1585 | 3 to 18
1448 to 1623
0.0053 to 0.0176 | | Fuel-flow rate,
lb/hr
Pressure, in. Hg
Air velocity, | <u>4</u>
29 | 17 to 32 | | ft/sec | 42 to 131 | *115 | #### APPARATUS Figure 1 shows a schematic diagram of the apparatus. The air supply and exhaust were connected with the laboratory systems. Airflow and exhaust pressure were regulated by remote-control valves. The air was heated in an electric resistance heater consisting of three 5/8-inch-diameter Inconel tubes in an insulated box. The test section consisted of a 6-foot-long insulated tube of 3-inch inside diameter, fabricated from 1/8-inch-thick Inconel. Two windows were provided for observation of the flames. A movable, air-atomized water spray, shown at the bottom of the test section, was used to quench the reaction and to vary the combustor length, which is defined as the distance from the fuel injector to the quench spray. Commercial propane (97.8%) was taken from a cylinder and was passed through a fuel injector suspended from the top of the test section. The fuel injectors are shown in figure 2. The injector used for the spontaneous-ignition study consisted of a coiled tube with 0.08-inch inside diameter, immersed in the hot airstream. The multipoint injectors (concentric-ring and spoke types) used for the rest of the program were designed to give an approximate-step concentration profile: a fairly flat concentration at the core and low fuel concentrations at the wall; these injectors were positioned about 9 diameters downstream of the air inlet. Inlet-air temperatures were measured by a Chromel-Alumel thermocouple and were corrected for radiation losses with a wall temperature measurement at the same axial position. Fuel temperatures were determined with Chromel-Alumel thermocouples positioned as shown in figure 2. Exhaust temperatures obtained from a six-couple rake located 6 feet downstream from the vertical section were averaged and recorded on a strip chart. Test-section static pressure was taken at a static tap about 5 inches upstream of the fuel injector. Air, fuel, and quench water were metered through calibrated rotameters. ## PROCEDURE # Ignition-Delay Measurements Combustor length and air velocity were pre-set, and the ignition delay τ was measured as $$\tau = \frac{1}{11} \tag{1}$$ where l is the distance between the fuel injector and water quench spray, and U is the mean velocity of the airstream at the minimum temperature for ignition. With the heater on, the air temperature was allowed to rise continuously. The fuel throttle valve was pre-set, and burner pressure was adjusted to atmospheric pressure. For each ignition run, the fuel shutoff valve was opened briefly, and ignition was noted by a sharp rise in the exhaust temperature. Near ignition temperature, data were recorded at 5° to 15° F temperature intervals. The ignition temperature was taken as the average of the closest ignition and nonignition points. #### Efficiency Measurements The fuel flow was adjusted to the desired flow after ignition had been established. The quench-water rate was adjusted to give exhaust temperatures of 900° to 1200° F. Average exhaust temperatures were continuously recorded, and data were taken when approximately steady-state conditions were reached. All atmospheric runs were made with the maximum airflow. Runs at reduced pressures were made at constant velocity and lowered air mass flows. A fuel-air ratio of 0.0175 was not exceeded, because the temperature of the burner wall became excessive. # Method of Computing Combustion Efficiency Combustion efficiencies were calculated from a heat balance. Combustion efficiency $\eta_{\rm R}$ is defined as $$\eta_B = \frac{\text{Actual enthalpy increase}}{\text{Ideal enthalpy increase}}$$ where the actual increase in enthalpy ΔH_{ac} is given as $$\Delta \mathbf{H}_{ac} = (\mathbf{H}_{T_{2}} - \mathbf{H}_{T_{1}})_{a} + (\mathbf{H}_{T_{2}} - \mathbf{H}_{T_{1}})_{f} + (\mathbf{H}_{T_{2}} - \mathbf{H}_{T_{1}})_{w} + \mathbf{Q}_{q,a} + \mathbf{Q}_{L}$$ where the enthalpy changes refer to air a, fuel f, and quench water w from the initial temperature T_1 to the exhaust temperature T_2 , $Q_{q,a}$ is the enthalpy change of the quench atomizing air, and Q_L is the heat loss from the duct. Since Q_L amounted to only 3 to 7 percent of the ideal enthalpy rise and required an involved and approximate calculation for each point, its value was not included in the efficiency calculations. The ideal enthalpy rise is the heat of combustion of the fuel at the exhaust temperature. #### RESULIS ## Ignition Delays and Temperatures The ignition-temperature-delay measurements are shown in figure 3. The data were taken for combustor lengths of 11 to 25 inches and air velocities of 42 to 131 feet per second. Ignition temperatures were independent of the values of combustor length and air velocity when delay was calculated according to equation (1). Fuel-flow rate for the single-point injector was held constant at about 4 pounds per hour, which resulted in higher fuel-air ratios for the low-velocity runs. Check runs at lower fuel flows showed no variation in ignition temperature and indicated no significant effect of fuel-air ratio in the very lean range. For comparison, four ignition points are shown for the spoke injectors at 1-atmosphere pressure. Ignition temperatures for the concentric-ring injector were about 100° F lower and were always accompanied by diffusion flames. ## Flame Observations Table I indicates some observations of the flame. Time exposures of the diffusion flame for fuel injector C, which was a spoke injector, are shown in figure 4. Progressive blowoff from the orifices can be observed as the fuel flow is increased, until the flame stabilizes at the central orifice only. At air temperatures above the ignition temperature, where the flame did not stabilize at the injector, the fuel burned in the duct at some distance downstream from the injector and, in most cases, below the lower window. The type of flame observed when stabilization occurred near the lower window probably was not representative, since the flame tended to stabilize in the recirculation region of the window cavity. # Efficiency of Injector-Stabilized Flames Table I gives the combustion efficiency data. Figure 5 shows the effect of fuel-air ratio on combustion efficiency for the injector-stabilized diffusion flames. The efficiencies increased to values of 90 to 100 percent at a fuel-air ratio of about 0.01. Fuel flows were limited by blowoff from the injector or by excessive wall temperatures (figs. 5(a) and (b)). A variation in air temperature from 1448° to 1623° F had no significant effect on the efficiencies. Figures 5(a) and (b) show no appreciable effect of combustor length on efficiency for lengths of 6 inches and longer. Figure 6 shows the decrease in efficiency for injector C at lengths of less than 6 inches. Flame was not stabilized at several orifices at this fuel flow. The effect of pressure on the efficiency of the injector-stabilized flames is shown in figure 7 at a velocity of approximately 115 feet per second and a fuel-air ratio of 0.013. Efficiency decreased only slightly with decreasing pressure. Flames did not stabilize at static pressures lower than approximately 17 inches of mercury at the temperatures available. # Efficiency of Ignition-Stabilized Flames Figure 8 shows the effect of air temperature on combustion efficiency for lengths of 12 and 18 inches. The dashed portion of the curve intersects the axis at the ignition temperature: Fuel-air ratio, in the range investigated, did not show an appreciable effect on the efficiencies. However, increasing the fuel flow provided additional cooling of the airstream surrounding the fuel lead-in tube and resulted in lowered efficiencies at constant heater outlet tenerature. 6 NACA IN 4028 The effect of pressure on combustion efficiency of the ignitionstabilized flames is shown in figure 9. Since air temperature varied during these runs, the results are plotted as efficiency drop, compared with the data at 1 atmosphere for the same air temperature (fig. 8). #### DISCUSSION The data of figure 3 are replotted as log ignition delay against the reciprocal of absolute temperature in figure 10. The data follow the Arrhenius relation with an apparent activation energy of 43 kilocalories per mole. The ignition delays and activation energy compare favorably with those found by Mullins for prevaporized kerosene (ref. 2). The apparent anomaly of the lower ignition temperatures for the concentric-ring injector was investigated by means of high-speed photography. Ignition was initiated at several centers in the immediate wake of the injector. Residence time in the fuel injector was long enough for considerable cracking of the fuel and resulted in carbon formation. Ignition, in this case, may be more representative of a highly cracked mixture and thus may be associated with lower ignition temperatures. # Combustion of Injector-Stabilized Flames The mixing process must precede the burning for the diffusion flames. Since the flames may be assumed to burn at near stoichiometric composition, the reaction rates are high and the mixing process will be rate-controlling. The drop in efficiency at lengths of less than 6 inches (fig. 6) cannot be attributed entirely to quenching of the diffusion flame since, for this particular fuel flow, the flame was not stabilized at all the orifices. Fuel from the nonburning jets could pass unreacted through the quench if flame did not spread from the burning jets. The spreading rate of the burning jet, measured from the included angle of the flame jet photographs, was 20°, compared with about 12° for burning free jets in references 3 and 4. That fact that combustion efficiency is relatively independent of pressure may be expected from the independence of the turbulence diffusion coefficient on static pressure. Blowoff from the fuel injectors was not investigated quantitatively. However, the photographs of figure 4 show that blowoff was progressive. Flame held at higher velocities on the center orifice, probably because of the higher blockage of the fuel lead-in tube. Flame blowoff appeared NACA TN 4028 7 sensitive to configuration and was not complete for the air-cooled injector (D), which operated up to sonic fuel velocity, or for injector C (0.033-in.-diam. orifices). ## Combustion of Ignition-Stabilized Flames At temperatures or fuel residence times greater than those corresponding to the ignition temperature, distance for burning becomes available between the flame front and the quench. The following sketch illustrates the case where the flame does not stabilize at the injector: Since the over-all mixture is very lean, the combustion rate should be low, resulting in a fairly long time requirement for efficient combustion, in addition to the ignition delay. #### SUMMARY OF RESULTS The following results were observed when gaseous propane was injected into an airstream heated from 1395° to 1623° F. - 1. Spontaneous-ignition delays of 0.007 to 0.049 second occurred for propane injected into the airstream from a single tube. The ignition delay data follow the Arrhenius relation, with an apparent activation energy of 43 kilocalories per mole. - 2. Two types of flames were observed when injectors with multipoint orifices were used: (1) diffusion flames that stabilized at the injector orifices when conditions for ignition were favorable in the wake of the injector and when fuel flows were low, and (2) ignition-stabilized flames that formed in the duct some distance downstream of the injector. - 3: Combustion efficiency of the diffusion flames increased rapidly with increasing fuel-air ratio to values of 90 to 100 percent at a fuel-air ratio of about 0.01. NACA IN 4028 - 4. Air temperature and length had no noticeable effect on the efficiency at burner lengths of 6 inches or more. Combustion efficiency decreased markedly at lengths of less than 6 inches. - 5. Decreasing the burner pressure to approximately 17 inches of mercury lowered the combustion efficiency of the diffusion flames only slightly. - 6. Combustion efficiency of the ignition-stabilized flames was strongly dependent on temperature and increased rapidly at temperatures higher than those required for ignition. - 7. Decreasing the burner length lowered these efficiencies. - 8. As pressure was lowered, efficiency of the ignition-stabilized flames decreased. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, May 14, 1957 ## REFERENCES - Mullins, B. P.: Studies on the Spontaneous Ignition of Fuels Injected into a Hot-Air Stream: General Introduction and Pt. I - The Development of a Combustion Test Rig for Measuring the Ignition Delay of Fuels. Rep. No. R.89, British NGTE, Aug. 1951. - 2. Mullins, B. P.: Studies on the Spontaneous Ignition of Fuels Injected into a Hot-Air Stream: Pt. II The Effect of Physical Factors Upon the Ignition Delay of Kerosine-Air Mixtures. Rep. No. R.90, British NGTE, Sept. 1951. - 3. Hawthorne, W. R., Weddell, D. S., and Hottel, H. C.: Mixing and Combustion in Turbulent Gas Jets. Third Symposium on Combustion and Flame and Explosion Phenomena, The Williams & Wilkins Co. (Baltimore), 1949, pp. 266-288. - 4. Yagi, Sakae, and Saji, Kenjiro: Problems of Turbulent Diffusion and Flame Jet. Fourth Symposium (International) on Combustion, The Williams & Wilkins Co. (Baltimore), 1953, pp. 771-781. 1517 | Fuel
in-
jector | Quench
set-
ting,
in. | flow, | Fuel
flow,
lb/hr | Air
temper-
ature,
or | Fuel
temper-
ature, | Burner
static
pressure,
in. Hg | Air ve-
locity,
fps | Combus-
tion ef-
ficiency, | Flame observations | | |-----------------------|--------------------------------|--|--|--|---|--|--|--|---|--| | A | 9 | 405
403
403
404
405
404 | 2.48
3.46
4.25
4.80
5.18
6.06 | 1535
1526
1516
1507
1506
1518 | 1463
1457
1452
1451
1450
1450 | 29.3±0.2
29.3
(Unsteady) | 117
116
116
115
116
116 | 10.3
61.3
95.3
103.2
102.6
100.3 | Stabilized at injector Partial blowoff Intermittent flashing after blowoff | | | ı | 12 | 393
393
388 | 2.42
3.46
4.26
5.24
2.05
3.41
4.16
4.96 | 1552
1539
1527
1538
1564
1556
1536
1540 | 1471
1466
1465
1470
a1592
1475
1475
1480 | 29.2±0.3
29.2 | 114
112
114
114
114
114
111 | 55.7
88.7
88.5
63.5
80.5
93.4
96.4 | Blowoff | | | | 18 | | 2.19
2.91
3.32
4.16
5.07
5.34
6.22
7.18 | 1473
1464
1457
1449
1448
1460
1455
1471 | 1413
1412
1410
1420
1415
1425 | 29.3±0.2
29.5
30.3
30.5 | 115
114
113
114
113
115
109
109 | 53.3
65.5
92.5
96.0
95.4
87.1
99.2
81.7 | Flame stabilization at injector ^b Partial blowoff "Lifted" flame Blowoff, partially stabilized at lower window | | | D | 12 | 390 | 2.24
3.26
2.32
2.40
3.09 | 1566
1568
1579
1578
1576 | 1242
1150
1250
1245
1175 | 28.9
(Unsteady)
28.9 | 116
116
122
117
119 | 15.6
16.2
24.4
33.7
27.9 | Invisible | | | | | 387
391
391 | 2.27
2.48
3.15
4.06
6.05 | 1586
1587
1586
1589
1576 | 1258
1245
1180
1125
970 | | 118
116
118
118
117 | 48.0
80.6
44.2
34.8
89.5 | Stabilized at injector | | | | | | 6.52
5.46
4.52
4.02
3.48 | 1569
1566
1573
1580
1591 | 944
1016
1082
1125
1170 | (Unsteady) | 116

117
117 | 98.5
97.7
102.7
90.1
93.1 | | | | | | 386
394
389 | 2.86
2.23
2.21 | 1593
1604
1623 | 1220
1280
1282 | 28.9 | 116
118
119 | 96.3
95.5
69.4 | Invisible ^c | | | | 18 | 391
390
391 | 2.32
2.66
3.33
3.81
4.70 | 1526
1529
1527
1527
1526 | 1215
1187
1130
1087
1020 | 28.9±0.3
28.9±0.3
(Unsteady)
28.9 | 114 | 3.5
18.6
14.1
20.3
19.4 | Invisible | | | | | 390 | 4.20
4.19
5.21
6.14
4.20 | 1537
1545
1549

1557 | 1065
1070
1000

1080 | 28.9
(Unsteady)
29.0±2
28.9±0.3 | 115
115
116
 | 38.0
37.2
36.5
48.6 | Flashing at lower window
Invisible | | | | <u>.</u> | 590
389 | 4.18
6.37 | 156 4
1551 | 1087
935 | 28.9±0.3
30.7 | 116
115 | 53.6
93.7 | Invisible Slight flashing, partially stabilized at lower window | | | |] | 395 | 4.23 | 1571 | 1080 | 30.8±0.5 | 111 | 60.0 | Slight flashing visible at lower window | | | | | 356 | 4.23 | 1560 | 1058 | 27.5±1.0 | 110 | 47.2 | Slight flashing visible at lower window | | | | | 315
276
198 | 3.45
3.11 | 1547 | 1115 | 24.7
21.9
15.3 | 118 | 43.1
28.6
No | Invisible | | | | | 388 | 4.09 | 1607 | 1117 | 28.8 | 114 | burning
71.0 | . • | | ^aHigh fuel temperature probably due to burning around tube at thermocouple position. DFlame was not stabilized at all orifices during any fuel flow. ^cFuel did not reignite and stabilize at injector following brief fuel shutoff. | | | | | _ | TABLE | I Cono | luded. | SUMMARY (| F DATA | and the second s | |------------------------|--------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|---------------------------------|--------------------------------------|--------------------------------------|--| | Fuel-
in-
jector | Quench
set-
ting,
in. | flow. | Fuel
flow,
lb/hr | Air
temper-
ature, | Fuel
temper-
ature,
op | Burner
static
pressure,
in. Hg | Air ve-
locity,
fps | Water
flow
Airflow
lb/lb | Combus-
tion ef-
ficiency, | | | В | 12 | 422
421 | 4.15
3.08
2.30
2.85
3.61 | 1514
1539
1552
1549
1545 | 1267
1340
1385
1354
1315 | 29.3±0.2
29.3
29.3±0.4
29.3
29.3±0.5 | 121
122
123
122
122 | | 70.4
8.2
25.5
26.0
22.4 | Stabilized at center orifice Invisible | | | | 419
421 | 2,39
3.15 | 1557
1550 | 1412
1562 | 29.3 | 123
125 | | 44.0
, 84.2 | Stabilized at all orifices Stabilized at center orifice - "lifted" flame visible from others | | | | 419 | 3.67
4.02
4.73 | 1544
1640
1534 | 1330
1314
1275 | | 122
122
121 | } | 100.1
94.3
. 91.0 | Center orifice only | | | | 391
591 | 5.48
5.78
6.11
5.22
5.10 | 1529
1535
1557
1534
1533 | 1235
1215
1195
1221
1245 | 29.4±0.5
29.4 | 121
122
123
115
115 | | 94.3
91.8
92.8
18.3
87.5 | Invisible Stabilized at center orifice - flame slightly "lifted" | | | | 334
300
292
280
268 | 4.56
3.96
3.77
3.64
3.51 | 1515
1520
1550
1558
1566 | 1257
1282
1324
1330
1350 | 26.5
23.0
22.5
21.1
20.1 | 106
110
115
114
115 | | 80.6
84.4
75.4
83.1
82.2 | | | | | 266
404
404 | 3.03
5.25
4.73 | 1584
1562
1566 | 1380
1250
1288 | 17.4
29.3
29.3 | 133
118
118 | | _82.0
_33.6
65.8 | Invisible
Stabilized at center orifice - "lifted" | | | | 358
200 | 4.42
2.64 | 1557 | 1287
1315 | 26.1
14.0 | 117
120 | | 66.1 | Stabilized at center orifice - blowoff Invisible | | | - | 398 | 4.66 | 1625 | 1344 | 29.1 | 121 | i | 64.4 | Stabilized at center orifice - "lifted" | | | 18 | 405
397 | 4.57
2-28 | 1637 | 1346 | 29.5 | 138 | - | 45.5 | Invisible | | | | | 3.28
4.10
5.03
5.85 | 1539
1533
1635
1532 | 1352
1274
1228
1186 | 29.5±0.5
29.5±0.7 | 114 | | 32.1
29.8
21.3
24.0 | | | | | 402 | 2.38 | 1558 | 1414 | 29.5 | 117 | | 65.1 | Stabilized at center crifice - "lifted" flames at others | | | | 380
384
385
384 | 2.88
5.43
4.01
4.59 | 1546
1541
1535
1525 | 1375
1346
.1314
1287 | | 110
111
111
110 | | 78.0
93.5
90.0
92.0 | Center orifice only | | | | 584
584
583
383 | 5.07
5.65
6.24 | 1528
1530
1553 | 1270
1240
1215 | 29.5±0.7 | 110
110
111 | | 88.3
87.5
71.9 | Stabilized at center orifice Blowoff Blowoff | | | | 347 | 5.46
4.61 | 1568
1562 | 1260
1343 | 29.5
26.3 | 112 | | 76,7
61,0 | Stabilized | | | | 311
272
296 | 3.67
3.24
3.00 | 1560
1554
1595 | 1351
1355
1407 | 23.5
19.8
21.1 | 113
118
122 | | 78.9
54.8
55,0 | Stabilized Hlowoff Stabilized | | C | 7 | 598
 | 4.53 | 1526 | 1200 | 29.5±0.4 | 114 | 0.248 | 94.8 | Stabilized at injector - some flames "lifted" | | | 6
5 | | 4.52
4.45
4.45 | 1532
1537
1540 | 1202 | 29.5 | 114 | .246
.243 | 84.5
80.8
66.9 | Stabilized at injector - some flames "lifted"b | | | 5 | - } | 4.52 | 1541 | 1198 | | | 1 | 51.3 | | | | 5
5
4
5 | 396
397 | 4.46
4.41
4.41
4.41
4.55 | 1549
1551
1555
1560
1564 | 1205
1209
1217
1217
1230 | | 116 | .215
.194
.164
.188
.186 | 44.5
45.6
48.6
65.1
74.0 | | | ļ | 6 | | 4.30 | 1568
1573 | 1235
1247 | | | .185
.213 | 84.4
92.9 | Stabilized at injector - some
flames "lifted" | | · | | . + | 4.28 | 1584 | 1250 | | 117 | .230 | 87.5 | Stabilized at injector - some
flames "lifted" | | } | | | 2.12 | 1610
1613 | 1395
1375 | | 118
119 | .182 | 66.4
67.9 | Stabilized at all orifices
Stabilized at all orifices | | | | 597 | 5.27 | 1608 | 1340 | | 118 | .202 | 88.7 | Flame from all orifices - "lifted" flames at 1 to 2 orifices | | | | 1 1 | 4.02
4.86
5.90 | 1608
1602
1603 | 1300
1246
1193 | | 118
117
117 | .255
.255
.305 | 93.8
89.9
94.6 | Blowoff from several orificesb
Stabilized at center orifice onlyb | ⁸Flame would not restabilize at injector after fuel shutdown. bEvidence of weak burning downstream of quench. Figure 1. - Schematic diagram of 3-inch-diameter high-temperature burner. (b) Concentric-ring injector. Figure 2. - Propane fuel injectors. Figure 3. - Spontaneous-ignition delays of propane-air mixtures. Pressure, 1 atmosphere. Flame stabilized at all orifices; fuel-flow rate, 3.44 lb/hr Blowoff from several orifices; fuel-flow rate, 4.11 lb/hr Blowoff from several orifices; fuel-flow rate, 5.35 lb/hr Flame stabilized at center orifice only; fuel-flow rate, 6.75 lb/hr Figure 4. - Propane diffusion flames, injector C. Pressure, 1 atmosphere; air velocity, 115 feet per second; air temperature, 1500° F. (a) Fuel injector A. Figure 5. - Effect of fuel-air ratio on combustion efficiency of diffusion flames. Pressure, 1 atmosphere; air velocity, 115 feet per second. (c) Fuel injector D (air-cooled). Figure 5. - Concluded. Effect of fuel-air ratio on combustion efficiency of diffusion flames. Pressure, 1 atmosphere; air velocity, 115 feet per second. NACA TN 4028 Figure 6. - Effect of combustor length on efficiency of diffusion flames with injector C. Pressure, 1 atmosphere; air velocity, 115 feet per second; fuel-air ratio, 0.011. Figure 7. - Effect of pressure on combustion efficiency of diffusion flames with injector B. Air velocity, 115 feet per second; fuel-air ratio, 0.013; combustor length, 12 inches; air temperature, 1515° to 1584° F; fuel temperature, 1221° to 1380° F. NACA TN 4028 Figure 8. - Effect of air temperature on combustion efficiency of ignitionstabilized flames with fuel injector D (air-cooled). Pressure, 1 atmosphere; air velocity, 114 feet per second. Figure 9. - Effect of pressure on combustion efficiency of ignition-stabilized flames with fuel-injector D (air-cooled). Air velocity, 114 feet per second; fuel-air ratio, ~0.011. Figure 10. - Arrhenius relation for ignition delays of propaneair mixtures.